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Abstract: A fault detection model for hydroponic systems, based on the feedforward 
Neural Network methodology was developed. Three kinds of faults were considered: 
mechanical, sensor and biological faults. In this paper, a preliminary detection system is 
presented, which generally detects the existence of any faulty situations. In the developed 
network, only the two first kinds of faults were considered. Biological faults, because of 
their particularities, were treated separately and some of their characteristics are 
presented at the end. Copyright © 2001lFAC 
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I. INTRODUCTION 

The goal of every greenhouse facility is to maximize 
quantity as well as quality of production. This 
maximization is achieved using automated systems in 
order to control the environment inside the 
greenhouse, so optimal conditions for the specific 
cultivated plant are approximated. In addition, 
hydroponic cultivation gives the opportunity to 
control root environment precisely and thus to have 
more extensive plant production system control. 

Loss of control over a greenhouse is a phenomenon 
usually having negative effects on the production 
and, consequently, the profit of the facility. Certain 
failures (faults) are easily noticed, but others are quite 
difficult to detect. Of course, a feedback-controlled 
greenhouse may be able' to maintain desired 
conditions even when some parts of the control 
mechanism are out of order. However, especially 
when faults concern the plant, the effects may be 
disastrous for the entire production. Thus, detection 
and diagnosis of possible faults becomes very 
important. In particular, that which is the most 
important is fast detection of incipient faults. That is, 
detection at the earliest possible stage of slowly 
developing faults, as well as the quick identification 
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of the problem. In order to have quick detection, an 
on-line identification system is necessary. 

A feedforward Neural Network (NN) based fault 
detection system was developed. The main area of 
concentration was deep-trough hydroponic systems. 
This becomes easier in hydroponics, for several 
environmental variables of the plant can readily be 
monitored. The cultivated plant was lettuce (Lactuca 
sativa, cv. Vivaldi). The main variables of the root 
environment that can be monitored and can give an 
image of the real situation of the system are the 
nutrient solution's pH, Electrical Conductivity (EC), 
dissolved oxygen (DO) as well as its temperature and 
in addition, the transpiration rate of the plants. 

2. MATERIALS AND METHODS 

Behaviors of normal and malfunctioning systems 
may differ completely and those differences may be 
detected by measuring the environmental variables 
mentioned before. The main advantage of the use of 
Neural Networks is that the exact relation between 
the values of those environmental variables and the 
situation of the system (normal of faulty), is not 
needed. This means that it is not required to have an 
accurate model of the hydroponic system, from 



which several residuals or fault signatures would be 
extracted and used for the final fault detection. 
Neural Networks have been proved capable of 
identirying faults in several complex biological 
processes (Parlos et aI., 1994; Sorsa et aI. , 1991; 
Venkatasubramanian and Chan, 1989; Watanabe et 
aI. , 1989) in which, neither analytical models nor 
intermediate residual calculations were used. 

Lettuce plants were cultivated in a continuous 
production deep-trough hydroponic system. They 
were transplanted into the system after growing from 
seed in a growth chamber for 11 days. Every two 
days, seven new plants were transplanted to the 
system, while seven plants of the age of 28 days 
(from seeding) were harvested. Consequently, the 
three ponds of the system had constantly the same 
number of plants of the same age. This made the 
system somewhat stable or, more precisely, 
periodically stable, with a period of two days. The 
important advantage of this method, except for 
having a quasi-stable system, is that a continuous 
production of plants was achieved (harvest every two 
days), which resembles real-life hydroponic 
production systems more closely than other 
techniques previously used in neural network 
mode ling of hydroponics (Ferentinos, 1999). 

Desired values of the environmental parameters 
during the operation of the hydroponic system were 
an air temperature of 240 C during the day and 19° C 
during the night, relative humidity from 30% to 70% 
and a light integral of 17 moles . m·2 

. d 1
• For the 

nutrient solution, the pH set point was 5.8, the EC 
was maintained between 1150 and 1250 microS· cm-1 

and the DO was maintained between 6 and 7.5 mglL. 

2. J Normal and Faulty Situations 

The procedure of training the NN requires an 
accurate definition of "normal operation", defined in 
our case as unstressed plants in a system that is in 
control. We need not express this normal situation by 
means of specific values of the environmental 
variables, because neural networks do not need such 
a representation in order to learn the pattern. Thus, 
we need to know only when the system and, in 
extension, the plants are in conditions considered to 
be normal by the producers, and also to know which 
training data sets correspond to those normal 
conditions. The values of the measured variables 
mentioned before were considered to be the normal 
values for the system and the plants were considered 
to be normal as long as they appeared healthy. We 
also need to define the "faulty operation" and to 
categorize this kind of operation into different types 
of faulty operations, one for each different kind of 
fault. In order to take data sets for each kind of fault, 
we have to impose those faults and take the 
corresponding measurements of the 
microenvironment variables. 
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Because the NN was trained off-line (meaning that 
the data sets were first collected and then used for 
training), there was no way of mistakenly having 
unhealthy plants in data sets of "normal operation". 
The "faulty operation" consisted of three different 
kinds of faults: 

Faults in actuators of the hydroponic system, 
Faults in sensors of the hydroponic system and 
Faults in the plants themselves. 

More specifically, the faults considered, by category, 
are the following: 

Mechanical faults. These are failures in mechanical 
parts of the hydroponic system, such as: a) pH 
control pump is out of order, or b) circulation 
pump is out of order. 
Sensor faults. The ones considered were: a) pH 
sensor failure and b) EC sensor failure . 
Biological faults. These are problems in the 
cultivated plants themselves and are divided into: 
a) root area faults and b) shoot area faults. 

For the first two categories of faulty operations, real 
data exist, as a lot of sensor and actuator failures 
were encountered during the set-up of the system. In 
addition, several faults were especially imposed in 
order to train the NN model and investigate its 
inherent fault detection capabilities. For the third 
category however, faults were imposed directly on 
the plants. To cause or to try to imitate the effects of 
a possible fault in the root zone, the plants were 
removed from the ponds and the root were exposed to 
air for intervals of five minutes. In the case of 
imitating a modest fault in the shoot area, leaves were 
disturbed (mechanically) for intervals of five minutes 
and slightly damaged in doing so. Finally, to imitate 
more permanent damage to the plants, several 
experiments were performed by cutting several 
leaves of each plant or by covering each plant with 
transparent plastic bags. 

2.2 Neural Network Fault Detection Model 

The feed forward methodology of neural networks 
was used. The inputs of the NN were the 
environmental parameters (air temperature, relative 
humidity and light intensity), the measurable 
variables of the microenvironment of the plant (pH, 
EC, DO, nutrient solution temperature and 
transpiration rate of the plants) and the control 
signals of the pH and the DO control schemes 
(amounts of acid and oxygen added, respectively). 
Each output of the NN corresponded to a specific 
fault and there was also one output that corresponded 
to normal operation. 

Several different architectures of one-hidden-Iayer 
and two-hidden-Iayer networks were tested, with two 
different activation functions (logistic and hyperbolic 



tangent). A new methodology for optimal network 
design and parameterization, based on Genetic 
Algorithms, was developed, but its results are 
incomplete, so only results of the conventional 
approach are presented. The training methodology 
was the Backpropagation Training Algorithm 
(Rumelhart el aI., 1986). Four different 
multidimensional minimization algorithms (steepest 
descent, conjugate gradient, quasi-Newton and 
Levenberg-Marquardt algorithm) were tested. An on­
line adjustable learning rate performed better than a 
constant one. In the steepest descent and the 
conjugate gradient algorithms the Hessian was used 
at every iteration to solve for the "best" learning rate. 
For the other two algorithms, the "best" learning rate 
was calculated with an approximate line search using 
a cubic interpolation. The final NN fault detection 
system was tested using new data and its 
generalization capabilities were explored. 

In addition to the network inputs listed before, one­
step and two-step histories of the pH, EC and DO 
variables were included. That is, for each of these 
variables, three inputs existed: one for time I (current 
time), one for time I-I (previous time step) and one 
for time 1-2 (two time steps before). Thus, the 
network had 15 inputs. The time step was 20 
minutes. 

The final neural network is going to have one output 
for the normal operation and an output for each of the 
faults considered. However, the amount of data 
collected so far is not yet sufficient to train such a 
network and in addition to test its performance. 
Therefore, a simpler neural network was trained and 
tested as a preliminary step. This NN had all the 
inputs presented before except for the transpiration 
rate, but only one output, a binary output having the 
value zero corresponding to normal operation and 
one corresponding to faulty operation. 

3. RESULTS 

In this paper, a preliminary investigation of the 
performance of the general normal/faulty operation 
detection neural network is presented. All mechanical 
and sensor faults of the systems were treated as a 
general "faulty situation". Biological faults showed 
no correlation with any measured variable except for 
the transpiration rate. On the other hand, transpiration 
rate was not affected by the first two fault categories. 
Therefore, biological faults were not considered in 
this preliminary model and in addition, transpiration 
rate was not used as an input to the network. The 
following section describes the training and 
evaluation of the preliminary NN fault detection 
system, while the next section analyzes some first 
results of some imposed biological faults. 
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3. I Neural Network Performance 

The NN model was trained with experimental data 
collected from all three ponds of the system, for both 
normal and faulty situations. Approximately 15 (non 
continuous) days of data of both normal and faulty 
operations formed the final training set. The time step 
of these data was 20 minutes. Thus, the NN training 
was based on 1050 entries for each input. 

The training process included two basic parts. The 
first part, the preliminary trammg process, 
determined the best combination of network 
architecture and training algorithm. This was 
achieved by training several candidate network 
topologies (both I-HL and 2-HL networks) with all 
four training algorithms and comparing the results. 
The second part of the training process, which was 
the basic Iraining process, focused on training the 
best combination of architecture and algorithm. 
Based on the preliminary training, the network 
architecture/algorithm combination that gave the best 
results was the 2-HL NN with 9 nodes in the first 
hidden layer and 9 nodes in the second hidden layer, 
trained with the quasi-Newton algorithm. 

The basic training process had a goal to further train 
the selected NN with the best possible algorithm for 
this system and architecture, which was proven to be 
the quasi-Newton algorithm. Many different random 
initial network parameters were tested in that 
training. Also, several values of the coefficient of the 
penalty term for the regularization (A.), varying by the 
order of 5, were tried. Both logistic and hyperbolic 
tangent activation functions (functions of hidden 
nodes) were tested. The results of these tests showed 
that the value of A. that leads to the minimum sum 
squared error (SSE) was 1..= 0.05 and that the network 
with logistic activation functions performed better 
than the one with hyperbolic tangent activation 
functions. Thus, the final NN model consisted of a 
network with 15 inputs, two hidden layers with 9 
nodes each that have logistic activation functions, 
and one output. The preferred training algorithm was 
the backpropagation training algorithm using the 
quasi-Newton multidimensional minimization 
algorithm with parameter 1..=0.05. 

Testing consisted of presenting new data to the 
trained NN model and exploring its generalization 
capabilities. The main goal in a fault detection 
system is not only detection of the existence of a 
fault, but also its rapid detection. Especially, when 
we deal with incipient faults, the time factor becomes 
more important because these faults are more 
difficult to detect as they begin. Six testing data sets 
were presented to the NN fault detection system. 
Each set starts with data of normal operation and 
some specific fault is imposed at some known time, 
except for the last data set that contains only normal 
data. 
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Fig. 1. Output of the FDNN for testing data set 
(fault imposed at the 16th interval). 
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Fig. 2. Output of the FDNN for testing data set 2 
(fault imposed at the 18th interval). 

The output of the NN was considered to represent a 
faulty operation if it has a value greater than 0.5, 
while for values smaller than 0.5 a normal operation 
was assumed. Fig. 1 shows the NN output on the first 
data set. The "pH control pump out of order" fault 
was introduced at the 16th interval. The fault was 
detected by the network within only two step 
intervals (point 18), that is a period of 40 minutes. 
After that the network gives a steady and strong 
indication that the operation is not normal, with 
values very close to 1. 

Fig. 2 shows the network output for the second 
testing set, which contains a "circulation pump out of 
order" fault. The data again start with normal 
operation and the fault is introduced in the 18th 

interval. It is clear here that this kind of fault is 
detected very fast. Even from the 18th data point, the 
output of the network is 0.69, which is considered as 
a weak fault indication. The next data point gives a 
value of 0.91 that strongly indicates the existence of 
faulty operation. A disadvantage here can be 
considered the fact that the output drops below 0.5 
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(normal operation) 40 minutes after the occurrence of 
the fault and stays in that area for an hour. After that 
period it returns to the faulty indication. This is not 
something important, if we consider the fact that the 
indication of some fault is already given at a very 
early stage and also that the kinds of faults 
considered are supposed to be irreversible without 
the interaction of a human factor with the system. 

In fig. 3, the network response in the third testing set 
is presented. This set contains the same fault type as 
the previous one that is now introduced in the 9th data 
point. This time it takes 20 minutes to the network to 
indicate a possible fault (value 0.64) while in a total 
of one-hour period after the introduction of the fault, 
the output becomes high enough (0.82) to strongly 
indicate the existence of faulty operation. 

The fourth testing data set has 167 20-minute 
intervals and the "failure in pH sensor" fault was 
introduced in the 16th point. The output of the NN 
model is presented in fig. 4. Similarly to the previous 
case, it takes one time step (20 minutes) for the 
network to indicate a possible fault with an output of 
0.60, while at the next 20-minute step the output 
becomes 0.91 and stays in that area. The rather 
periodical fluctuations of the output are caused by the 
nature of the sensor fault. This kind of fault was 
reproduced by adding a periodically changing noise 
to the readings of the pH sensor. The form of noise is 
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Fig. 3. Output of the FDNN for testing data set 3 
(fault imposed at the 9th interval). 
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Fig. 4. Output of the FDNN for testing data set 4 
(fault imposed at the 16th interval). 



a sine function. Thus, in the points where the noise 
becomes small, the fault confidence of the network 
decreases. However, this does not cause the network 
to exit the "faulty situation" area. 

The fifth testing data set contains the implementation 
of the "failure in EC sensor" fault. The set has 6920-
minute intervals and the fault was introduced in the 
16th interval. As can be seen in fig. 5, the fault is 
detected 4 hours after its beginning. Moreover, 
several hours later, when the noise of the sensor 
failure becomes small, the network indicates normal 
operation for that period. It seems that this specific 
fault causes some problems for the detection process, 
probably because no information about the control 
signal for the EC is present; EC was controlled 
manually in the hydroponic system. 

Finally, the last testing data set contains only normal 
operation data and it was used to check the network 
ability to recognize continuously varying normal 
behavior. The output of the network is shown in fig. 
6. The graph shows a period of almost one whole day 
and the output is always below 0.4, indicating normal 
operation during the entire period. 
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Fig. 5. Output of the FDNN for testing data set 5 
(fault imposed at the 16th interval). 
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Fig. 6. Output of the FDNN for testing data set 6 
(normal operation). 
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3.2 Biological Faults 

Several experiments consisted of imposing different 
faults on the plants in order to examine their effect on 
the monitored variables of the nutrient solution of the 
system. Four different series of experiments were 
performed. In the first, most of the largest plants were 
removed from the pond for five minutes. In this way, 
possible problems in the root zone of the plants were 
imitated. In the second series, several leaves of the 
largest plants were removed. This action imposed 
permanent damage on the plants and imitated the 
effects of major problems in the shoot zone of the 
plants. A similar but less influential series of 
experiments was the one in which leaves of the plants 
were disturbed for intervals of five minutes and 
slightly damaged. These experiments imitated shoot 
problems less important than the ones imitated in the 
previous series of experiments. Finally, in the fourth 
series, the largest plants (of ages of 23, 25 and 27 
days) were covered with transparent plastic bags. 
This imposed a temporary fault that imitated minor 
problems in the shoot zone. 

Effects of these biological faults, unfortunately, were 
not significant enough to be used in a fault detection 
scheme. The pH and the electrical conductivity 
appeared not to be affected at all by the faults. The 
transpiration, a variable known to be drastically 
affected by the condition of the plants, was so highly 
correlated with the environmental conditions of the 
greenhouse (temperature, light intensity and relative 
humidity) that effects of plant damage, even when 
seemingly severe, were not noticeable in most of the 
cases. Even in the experiments in which some leaves 
of the plants were cut and where one would expect 
major impacts in the transpiration ratio, the effects 
were "hidden" by the high correlation of the 
transpiration with the environmental parameters, 
especially temperature and light intensity. In fig. 7, 
the differences between the cumulated 
evapotranspiration rates between two of the tanks of 
the hydroponic system are shown. Every set of points 
represents periods of two days, between 
transplanting. At those points, the cumulated 
differences were reinitialized. At around time interval 
No. 2000, half of the leaves of the largest plants of 
tank 1 were removed, while nothing changed in tank 
2. One would expect that the transpiration would be 
reduced in tank 1, thus the difference between 
transpiration rates of tank 2 and tank 1 would 
increase. As can be seen in the graph, this is clearly 
not the case. This can be explained if the additional 
transpiration from the cuts of the removed leaves is 
taken into account. Thus, no indication of the fault 
appeared in this case. The differences between tanks 
even when normal conditions exist in both tanks, is 
caused by differences in the air movement above the 
tanks, which lead to difference transpiration rates. 
Similar results were obtained by the imposed faults 
of disturbing the leaves or removing the largest 
plants from the tanks for periods of five minutes. 
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Fig. 7. Cumulative evapotranspiration differences 
between two tanks of the hydroponic system 
("cuning the leaves" fault imposed at the 2000th 
interval). 

The only biological fault that gave an indication of its 
existence in the rate of transpiration was the fourth 
type, during which the largest plants were covered 
with transparent plastic bags. As shown in fig . 8, 
significant increase in the difference of cumulated 
transpiration rates between tank 2 and tank 1 
occurred after the introduction of the fault in tank 1 
(at time interval No. 1000). It is clear that during 
transpiration rate was reduced in tank I (the 
difference from transpiration of normal plants 
increased) during the six following to the 
introduction of the fault days. During these days, 
covered plants existed in the tank. After that period, 
all covered plants had been harvested, thus 
transpiration rate in tank 1 returned back to normal 
(last two sets of points in the graph). 

More data of this type of biological faults have to be 
collected so that a detection system can be 
developed. Because of the large amount of history 
data of the transpiration of the system that is needed 
by such a detection scheme, this model is going to be 
separate from the NN model the detects the other 
kinds of faults (mechanical and sensor faults). 

4. CONCLUSIONS 

The methodology of constructing a neural network 
based fault detection system in hydroponics was 
developed. Some preliminary results are presented. 
The results reflect a simplification of the more 
general NN model in that it has only one output and 
tries to classifY specific data into either normal or 
faulty operation. These testing results indicate that 
this simplified network is capable of detecting the 
faulty situation is very short time in most cases. The 
rapidity of detection suggests time steps smaller than 
the 20-minute time step used here. The results show 
that the NN has useful generalization capabilities. A 
next step is to develop a more detailed fault detection 
system that has one output for each specific fault. 
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Fig. 8. Cumulative evapotranspiration differences 
between two tanks of the hydroponic system 
("covering the plants" fault imposed at the 
1000th interval ). 
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